메뉴 건너뛰기

Molecular Beam Epitaxy, MBE System

MBE from Dr. Eberl MBE-Komponenten, Germany

MBE, Molecular Beam Epitaxy

OCTOPLUS 300 / 400 / 500 / 500 EBV / 600 / 600 EBV / OCTOPLUS-O 400, Thin Film System (OCTOPLUS 500 for PVD Application), Organic Deposition System
Dr. Eberl MBE-Komponenten GmbH, Germany


Dr. Eberl MBE-Komponenten사는 MBE와 표면 과학 및 다양한 UHV 응용 분야를 위한 박막 증착 장비를 제조 공급하며, 제품군으로 evaporation source, effusion cell, electron beam evaporator, sublimation source, 가스 소스 및 고객의 요구에 맞는 다양한 장비를 갖추고 있습니다. Dr. Eberl MBE-Komponenten은 약 30년 동안 전 세계 2000여 이상의 고객에게 2000가지 이상의 effusion cell과 다양한 종류의 evaporation source, MBE 시스템을 공급했습니다.
당사 (주)연진에스텍은 Dr. Eberl MBE-Komponenten의 MBE 시스템과 소스를 판매, 서비스합니다. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 Molecular Beam Epitaxy, MBE OCTOPLUS Systems 

 

 

300

400

500

500 EBV

600

600 EBV 

O-400 

Thin Film System 
Applications 
Semiconductors, Metals, Oxides, Organics 
III-V, II-VI or  
other materials 
III-V, II-VI or  
other materials 
SiGe, Metals, Oxides 
III-V, II-VI or  
other materials 
Si/SiGe(Sn) epitaxial growth 
Growth of oxides and metals 
CIGS, Kesterite or CdTe deposition 
Size of chamber 
300 mm ID
450 mm ID
550 mm ID
550 mm ID
600 mm ID
600 mm ID
450 mm ID 
550 mm ID
Base pressure 
< 5x10-11 mbar 
< 5x10-11 mbar 
< 5x10-11 mbar 
< 5x10-11 mbar
< 5x10-11 mbar 
< 5x10-11 mbar
< 5x10-11 mbar 
< 5x10-11 mbar 
Pumping 
Turbopump,  
Ion Getter Pump and TSP 
Cryopump, Turbopump,  
Ion Getter Pump and TSP 
Cryopump, Turbopump,  
Ion Getter Pump and TSP 
Cryopump, Turbopump,  
Ion Getter Pump and TSP 
Cryopump, Turbopump,  
Ion Getter Pump and TSP 
Cryopump, Turbopump,  
Ion Getter Pump and TSP 
Cryopump, Turbopump,  
Ion Getter Pump and TSP 
Cryopump, Turbopump,  
Ion Getter Pump and TSP 
Substrate heater temperature 
Up to 1200°C 
Up to 1400°C 
Up to 1400°C 
Up to 1400°C 
Up to 1200°C 
Up to 1200°C 
Up to 1400°C 
Up to 1400°C 
Substrate size 
Up to 
2“ wafers 
Up to 
3“ diameter 
Up to 
4“ diameter 
Up to 
4“ diameter 
4”, 6” or 
Multi-wafer 3x2” 
6”, 8” 
2” 
6” or 
100x100mm 
Source ports 
9p (OD 2.75“) or 
8p (OD 4.5“) 
10p (OD 4.5“) 
12p 
8p plus 
2 e-beam 
12p 
10p 
10p 
12p 
Source types 
Effusion cells, 
E-beam evaporators, 
Sublimation, 
Valved cracker, 
Gas sources 
Effusion cells, 
E-beam evaporators, 
Sublimation, 
Valved cracker, 
Gas sources 
Effusion cells, 
E-beam evaporators, 
Sublimation, 
Valved cracker, 
Gas sources 
Effusion cells, 
E-beam evaporators, 
Sublimation, 
Valved cracker, 
Gas sources 
Effusion cells, 
E-beam evaporators, 
Sublimation, 
Valved cracker, 
Gas sources 
Effusion cells, 
E-beam evaporators, 
Sublimation, 
Valved cracker, 
Gas sources 
Effusion cells, 
E-beam evaporators, 
Sublimation, 
Valved cracker, 
Gas sources 
Effusion cells, 
E-beam evaporators, 
Sublimation, 
Valved cracker, 
Gas sources 
In-situ monitoring 
Ion Gauge, QCM, Pyrometer, RHEED, QMA 
Ion Gauge, QCM, Pyrometer, RHEED, QMA 
Ion Gauge, QCM, Pyrometer, RHEED, QMA 
Ion Gauge, QCM, Pyrometer, RHEED, QMA 
Ion Gauge, QCM, Pyrometer, RHEED, QMA 
Ion Gauge, QCM, Pyrometer, RHEED, QMA 
Ion Gauge, QCM, Pyrometer, RHEED, QMA 
Ion Gauge, QCM, Pyrometer, RHEED, QMA 
Sample transfer 
Manual 
Manual or 
semi-automatic 
Manual or 
semi-automatic 
Manual or 
semi-automatic 
Automated transfer 
Automated transfer 
Manual or 
semi-automatic 
Manual or 
semi-automatic 
Load lock 
6 substrates 
6 substrates 
6 substrates 
8 substrates 
10 substrates 
10 substrates 
6 substrates 
5~10 substrates 

 


 

 

Octoplus Series

 

Selection guide by Element

1                                 18
H 2                     13 14 15 16 17 He
Li Be                     B C N O F Ne
Na Mg 3 4 5 6 7 8 9 10 11 12 Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra ** Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
 
*Lanthanides La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu  
**Actinides Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr  

(see IUPAC Periodic Table of Elements)

 

 MBE Components

 

 Thin Film / CIGS / CZTS / CdTe

  • Industrial Sources

  • R&D System for Thin Film CIGS, CZTS or CdTe Solar Cell Systems

  • R&D Sources

 

 APPLICATION

 Our MBE systems and components are used in the preparation of compound semiconductor devices such as HBTs, MESFETs, HEMTs as well as photo detectors and GaAs based laser diodes.


 

 Large capacity sources are available for Cu, Ga, In, NaF and Se evaporation in large scale production of thin film solar cells. We create turn-key R&D systems and components for the growth of CIGS, CZTS and CdTe solar cell layers.


 

 Our products are frequently employed for the preparation of nano structures like self-assembling dots, nano wires and for general small sample preparation.


 

 Our MBE systems enable the preparation of quantum materials. Atomic layer precise deposition of metals, semiconductors and superconductors allow the fabrication of qubits, which may become essential for future quantum computers.


 

 2D materials consist of a single layer of atoms or molecules. Examples are Graphene, Silicene, Borophene Phosphorene Tungsten and Molybdenum diselenide. The layers are prepared by 2D van der Waals heterostructures.


 

 Our MBE systems and components make it possible to prepare solid state devices to study spin-dependent electron transport phenomena and giant magneto-resistance effects. Magnetic tunnel junctions can be prepared with our Octoplus MBE systems.


 

 Our MBE systems make it possible to grow high quality topological insulators of different material types, e.g. HgTe, Bi2Se3  Bi2Te3, Sb2Te3, as well as Heusler alloys, oxides, and many others.    


 

 Electron beam evaporation as well as oxygen resistant thermal evaporation sources and heaters are used for vacuum deposition of oxide and nitride layers.


 

 We manufacture organic material deposition systems and components for the preparation of OLED organic solar cells and other organic thin films.


 

 Applications in this category are, for example, Au or Ag deposition for semiconductor device contacts and formation of Al contact layers for OLEDs. Numerous other metals are deposited by using our e-beam evaporators and high temperature sources.

Simulation

“Particle Ping-Pong” in the Monte Carlo particle tracing concept and example for the resulting beam flux distribution on the substrate

General Information

Introduction to our Monte Carlo Beam Flux Simulation

Simulation of the material evaporation and deposition in vacuum is usually based on the fundamental physical laws for the evaporation geometry (1/r2-Law) and Lambert’s Law, which explain the angular flux distribution from and to a surface element. These allow the application of different concepts to calculate the beam distribution of evaporation sources and therefore the deposition of material on a substrate.

 

Cross-section of an MBE system. Multiple radially arranged effusion sources are used to deposit materials onto a rotating substrate.

 

R&D / MBE Systems

Monte Carlo simulation of thin film deposition in R&D type physical vapor deposition and MBE systems

Cross-section of an MBE system. Multiple radially arranged effusion sources are used to deposit materials onto a rotating substrate.

Geometry of substrate and evaporation source (L)
 Calculated 2D flux distribution (Right)


 

Figure 1: Simulation of the flux distribution on a stationary substrate, assuming a single effusion cell using an insert for beam shaping. The black rectangle represents the deposition window of 125cmx300cm.
Figure 2: Combined flux distribution on the substrate by two symmetrically aligned effusion cells.

 

Flat Panel Systems

Monte Carlo simulation of thin film deposition for industrial continuously running-through flat panel coating systems

 

Monte Carlo simulation allows to calculate the flux distribution of various types of evaporation sources. It provides information on the resulting flow rate distribution, material composition on the substrate, and material efficiency, thus allowing to optimize source design, source arrangement and depositon system layout.

An example for large area industrial flat panel deposition is illustrated schematically in the figure above. A pair of point sources (left part) or alternatively a linear evaporator (right part) is applied for the material evaporation. The source material or, in a co-deposition process, various source materials are deposited onto continuously running-through flat panels.

 

Schematic illustration of the deposition process with 3 pairs of point sources depositing materials onto a moving roll.

 

Roll-to-Roll Systems

Simulation of the evaporation from three pairs of point sources like for example Cu, Ga and In in a moving roll-to-roll process

 

  • Why MC-Simulation?
    It provides important information while saving time and money
     

  • MC-Simulation allows the optimization of
    - source design
    - source arrangement
    - deposition chamber layout
     

  • It provides information about
    - layer uniformity
    - material efficiency
    - layer composition

  • For single material deposition and co-evaporation